		I		神戸中立工業局寺専門子校 2024年度シブバス 	
	科 目 —————	電気化学 (Electrochemistry)			
担当教員		安田 佳祐 准教授【実務経験者担当科目】			
対象学年等		応用化学専攻・1年・後期・選択・2単位【講義】			
学習·教育目標		A4-AC3(100%)			
電池や電気分解を中心に各種電気化学反応の特徴と応用分野における役割を述べる。電気化学がエネルギー ルギー変換、無機合成、表面処理、電子工学、環境化学などと密接な関連を持ち、それぞれの分野で重要な役割 いることを講義する。また、その他電気化学に関連する新しい機能性材料および先端技術についても述べる。本 当教員の製品製造に関する基礎研究や生産技術の実務経験を踏まえて、電池材料の作製手法について教授					
		到 達 目 標	達成度	到達目標別の評価方法と基準	
1	【A4-AC3】ガ	ルバニ電池と電解セルの違いについて理解できる.		ガルバニ電池と電解セルの違いを化学反応式や図を用いて説明できるかを, 後期中間試験およびレポートで評価する.	
2	【A4-AC3】電	気伝導率,イオン伝導性,輸率について理解できる.		電気伝導率や輸率などを計算できるか,さらに電解質溶液におけるイオン伝導のメカニズムを説明できるかを,後期中間試験およびレポートで評価する.	
3	[A4-AC3]電池の起電力,電極電位,界面構造(電気二重層),電極反応速度について理解できる.			様々な電池の半反応式を示し,起電力や電極電位などを計算できるか,また界面構造(電気二重層)や電極反応速度について図を用いて説明できるかを,後期中間試験およびレポートで評価する.	
4	【A4-AC3】サイクリックボルタンメトリーなどの電気化学計測技術について理解できる.			繰り返して電位を走査するサイクリックボルタンメトリーなどの電気化学計測 技術について説明できるかを,後期定期試験およびレポートで評価する.	
5	【A4-AC3】一次電池・二次電池・燃料電池の原理および特徴について理解できる.			一次電池・二次電池・燃料電池の原理・種類・半反応式・特徴および用途について説明できるかを,後期定期試験およびレポートで評価する.	
6	【A4-AC3】めっきや腐食・防食などの表面処理への電気化学の応用について理解できる。			電気めっきと無電解めっきの違いを説明できるか,また鉄の腐食メカニズムやカソード防食について説明できるかを,後期定期試験およびレポートで評価する.	
7					
8					
9					
10					
総合評価		成績は、試験90% レポート10% として評価する.試験成績は中間試験と定期試験の平均点とする.100点満点で60点以上を合格とする.ただし,原則として未提出レポートがあった場合は不合格とする.			
テキスト		「第2版 電気化学概論」: 松田好晴·岩倉千秋 共著(丸善出版)			
参考書		「電気化学 光エネルギー変換の基礎」:中戸義禮 著・藤平正道・魚崎浩平 監修(東京化学同人) 「基礎からわかる電気化学 第2版」: 泉生一郎・石川正司・片倉勝己ら 共著(森北出版) 「電池がわかる電気化学入門」: 渡辺正・片山靖 共著(オーム社) 「最新 二次電池が一番わかる」: 白石拓 著(技術評論社) 「コンパクト電気化学」: 岩倉千秋・森田昌行・井上博史 共著(丸善出版)			
関連科目		C2 無機化学I, C2 分析化学I, C3 無機化学II, C3 分析化学II, C3 物理化学I, C3 応用化学実験II, C5 材料化学, C5 エネルギー工学, C5 応用無機化学			
履修上の 注意事項		上記関連科目を十分学習し,理解しておくことが望ましい.			

授業計画(電気化学)				
	テーマ	内容(目標・準備など)		
1	電気化学の歴史と応用分野	「動物電気説」の発見を端緒として誕生した電気化学の発展の過程と応用分野の広がりについて説明する。		
2	電気化学系の姿	電気化学セル(ガルバニ電池および電解セル)について説明する。また,電気量およびファラデーの法則について説明する。		
3	電解質溶液の電気伝導率とモル電気伝導率	電解質溶液の電気伝導率とモル電気伝導率について説明する.		
4	イオン輸率と移動度	電解質溶液のイオン輸率と移動度について説明する.また,イオン伝導のメカニズムについて説明する.		
5	電池の起電力と電極電位	電池の起電力について説明した後,電極と電解質の界面で進行する反応に関与する反応種の活量と電極電位の関係を示すネルンスト式について説明する。		
6	電極反応速度(1)	電極と電解質の界面の構造(電気二重層)について説明する。また,電荷移動過程における反応速度式についても述べる。		
7	電極反応速度(2)	物質移動過程における反応速度式について説明する.		
8	中間試験	1週目から7週目までの内容で中間試験を行う.		
9	中間試験の解説,電気化学計測	中間試験の解説を行う.サイクリックボルタンメトリーなどの電気化学計測法の原理と用途について説明する.		
10	電池の歴史と一次電池	ボルタ電池以来現在までに発明された電池の歴史および乾電池のような充放電の繰り返しができない一次電池について説明する.		
11	二次電池(1)	自動車で使われている鉛蓄電池やハイブリッド車に使用されているニッケル水素電池について説明する.		
12	二次電池(2)	スマートフォンやノート型パソコンに使用されているリチウムイオン電池について説明する.		
13	燃料電池	燃料電池の種類,特長,実用化の現状について説明する.		
14	めっき・表面加工	水溶液中の金属イオンのカソード還元により金属薄膜を形成させる電気めっきについて説明する.また,外部電源を用いず還元剤のアノード酸化反応を利用する無電解めっきについて説明する.		
15	腐食·防食	金属の腐食機構,その防食方法,電位-pH図(プールベ図)について説明する.		
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
/#	後期中間試験および後期定期試験を実施する.			

後期中間試験および後期定期試験を実施する。 本科目の修得には、30 時間の授業の受講と 60 時間の事前・事後自己学習が必要である.事前学習では,次回の授業範囲について,教科書や配布資料を読み,各自で理解できないところを整理しておく.事後学習では,授業時に配布するレポートを指定期日までに提出すること.